Sabtu, 11 Desember 2010

GGL Induksi

Michael Faraday (1791-1867), seorang ilmuwan berkebangsaan Inggris, membuat hipotesis (dugaan) bahwa medan magnet seharusnya dapat menimbulkan arus listrik. Untuk membuktikan kebenaran hipotesis Faraday.
Berdasarkan percobaan, ditunjukkan bahwa gerakan magnet di dalam kumparan menyebabkan jarum galvanometer menyimpang. Jika kutub utara magnet digerakkan mendekati kumparan, jarum galvanometer menyimpang ke kanan. Jika magnet diam dalam kumparan, jarum galvanometer tidak menyimpang. Jika kutub utara magnet digerakkan menjauhi kumparan, jarum galvanometer menyimpang ke kiri. Penyimpangan jarum galvanometer tersebut menunjukkan bahwa pada kedua ujung kumparan terdapat arus listrik. Peristiwa timbulnya arus listrik seperti itulah yang disebut induksi elektromagnetik. Adapun beda potensial yang timbul pada ujung kumparan disebut gaya gerak listrik (GGL) induksi.
Terjadinya GGL induksi dapat dijelaskan seperti berikut. Jika kutub utara magnet didekatkan ke kumparan. Jumlah garis gaya yang masuk kumparan makin banyak. Perubahan jumlah garis gaya itulah yang menyebabkan terjadinya penyimpangan jarum galvanometer. Hal yang sama juga akan terjadi jika magnet digerakkan keluar dari kumparan. Akan tetapi, arah simpangan jarum galvanometer berlawanan dengan penyimpangan semula. Dengan demikian, dapat disimpulkan bahwa penyebab timbulnya GGL induksi adalah perubahan garis gaya magnet yang dilingkupi oleh kumparan.
Menurut Faraday, besar GGL induksi pada kedua ujung kumparan sebanding dengan laju perubahan fluks magnetik yang dilingkupi kumparan. Artinya, makin cepat terjadinya perubahan fluks magnetik, makin besar GGL induksi yang timbul. Adapun yang dimaksud fluks nmgnetik adalah banyaknya garis gaya magnet yang menembus suatu bidang.
Generator
Generator atau pembangkit listrik yang sederhana dapat ditemukan pada sepeda. Pada sepeda, biasanya dinamo digunakan untuk menyalakan lampu. Caranya ialah bagian atas dinamo (bagian yang dapat berputar) dihubungkan ke roda sepeda. Pada proses itulah terjadi perubalian energi gerak menjadi energi listrik. Generator (dinamo) merupakan alat yang prinsip kerjanya berdasarkan induksi elektromagnetik. Alat ini pertama kali ditemukan oleh Michael Faraday.
Berkebalikan dengan motor listrik, generator adalah mesin yang mengubah energi kinetik menjadi energi listrik. Energi kinetik pada generator dapat juga diperoleh dari angin atau air terjun. Berdasarkan arus yang dihasilkan. Generator dapat dibedakan menjadi dua rnacam, yaitu generator AC dan generator DC. Generator AC menghasilkan arus bolak-balik (AC) dan generator DC menghasilkan arus searah (DC). Baik arus bolak-balik maupun searah dapat digunakan untuk penerangan dan alat-alat pemanas.
Generator AC
Bagian utama generator AC terdiri atas magnet permanen (tetap), kumparan (solenoida). cincin geser, dan sikat. Pada generator. perubahan garis gaya magnet diperoleh dengan cara memutar kumparan di dalam medan magnet permanen. Karena dihubungkan dengan cincin geser, perputaran kumparan menimbulkan GGL induksi AC. OIeh karena itu, arus induksi yang ditimbulkan berupa arus AC. Adanya arus AC ini ditunjukkan oleh menyalanya lampu pijar yang disusun seri dengan kedua sikat. Sebagaimana percobaan Faraday
GGL induksi yang ditimbulkan oleh generator AC dapat diperbesar dengan cara:
memperbanyak lilitan kumparan,
menggunakan magnet permanen yang lebih kuat.
mempercepat perputaran kumparan, dan menyisipkan inti besi lunak ke dalam kumparan.
Contoh generator AC yang akan sering kita jumpai dalam kehidupan sehari-hari adalah dinamo sepeda. Bagian utama dinamo sepeda adalah sebuah magnet tetap dan kumparan yang disisipi besi lunak. Jika magnet tetap diputar, perputaran tersebut menimbulkan GGL induksi pada kumparan. Jika sebuah lampu pijar (lampu sepeda) dipasang pada kabel yang menghubungkan kedua ujung kumparan. lampu tersebut akan dilalui arus induksi AC. Akibatnya, lampu tersebut menyala. Nyala lampu akan makin terang jika perputaran magnet tetap makin cepat (laju sepeda makin kencang).
Generator DC
Prinsip kerja generator (dinamo) DC sama dengan generator AC. Namun, pada generator DC arah arus induksinya tidak berubah. Hal ini disebabkan cincin yang digunakan pada generator DC berupa cincin belah (komutator).
Transformator
Agar tidak berbahaya tegangan yang tinggi itu harus diturunkan terlebih dahulu sebelum arus listrik disalurkan ke rumah-rumah penduduk. Pada umumnya tegangan listrik yang disalurkan ke rumah-rumah penduduk ada dua macam, yaitu 220 volt dan 1l0 volt. Alat yang digunakan untuk menurunkan tegangan disebut transformator.
Bagian utama transformator adalah dua buah kumparan yang keduanya dililitkan pada sebuah inti besi lunak. Kedua kumparan tersebut memiliki jumlah lilitan yang berbeda. Kumparan yang dihubungkan dengan sumber tegangan AC disebut kumparan primer, sedangkan kumparan yang lain disebut kumparan sekunder.
Jika kumparan primer dihubungkan dengan sumber tegangan AC (dialiri arus listrik AC), besi lunak akan menjadi elektromagnet. Karena arus yang mengalir tersebut adalah arus AC, garis-garis gaya elektromagnet selalu berubah-ubah. Oleh karena itu, garis-garis gaya yang dilingkupi oleh kumparan sekunder juga berubah-ubah. Perubahan garis gaya itu menimbulkan GGL induksi pada kumparan sekunder. Hal itu menyebabkan pada kumparan sekunder mengalir arus AC (arus induksi).
Kita dapat rnembedakan transformator menjadi dua macam. yaitu transformator step up dan transformator step down. Transformator .step up adalah transformator yang jumlah lilitan primernya lebih kecil dari pada lilitan sekunder. Oleh karena itu, transformator step up dapat digunakun untuk menaikkan tegangan AC.

Gaya Lorentz

GAYA LORENTZ

Pada percobaan oersted telah dibuktikan pengaruh arus listrik terhadap kutub magnet, bagaimana pengaruh kutub magnet terhadap arus listrik akan dibuktikan dari percobaan berikut :

Seutas kawat PQ ditempatkan diantara kutub-kutub magnet ladam kedalam kawat dialirkan arus listrik ternyata kawat melengkung kekiri.

Gejala ini menunjukkan bahwa medan magnet mengerjakan gaya pada arus listrik, disebut Gaya Lorentz. Vektor gaya Lorentz tegak lurus pada I dan B. Arah gaya Lorentz dapat ditentukan dengan tangan kanan. Bila arah melingkar jari-jari tangan kanan sesuai dengan putaran dari I ke B, maka arah ibu jari menyatakan arah gaya Lorents.

gambar :

clip_image084

Besar Gaya Lorentz.

Hasil-hasil yang diperoleh dari percobaan menyatakan bahwa besar gaya Lorentz dapat dirumuskan sebagai :

F = B I clip_image086sin a

F = gaya Lorentz.

B = induksi magnetik medan magnet.

I = kuat arus.

clip_image086[1]= panjang kawat dalam medan magnet.

a = sudut yang diapit I dan B.

Satuan Kuat Arus.

Kedalam kawat P dan Q yang sejajar dialirkan arus listrik. Bila arah arus dalam kedua kawat sama, kawat itu saling menarik.

Penjelasannya sebagai berikut :

Dilihat dari atas arus listrik P menuju kita digambarkan sebagai arus listrik dalam kawat P menimbulkan medan magnet. Medan magnet ini mengerjakan gaya Lorentz pada arus Q arahnya seperti dinyatakan anak panah F. Dengan cara yang sama dapat dijelaskan gaya Lorentz yang bekerja pada arus listrik dalam kawat P.

clip_image087

Kesimpulan :

Arus listrik yang sejajar dan searah tarik-menarik dan yang berlawanan arah tolak- menolak.

Bila jarak kawat P dan Q adalah a, maka besar induksi magnetik arus P pada jarak a :

clip_image089

Besar gaya Lorentz pada arus dalam kawat Q

clip_image091

Besar gaya Lorentz tiap satuan panjang

clip_image093

clip_image095

clip_image097

F tiap satuan panjang dalam N/m.

Ip dan IQ dalam Ampere dan a dalam meter.

Bila kuat arus dikedua kawat sama besarnya, maka :

clip_image099

Untuk I = 1 Ampere dan a = 1 m maka F = 2.10-7 N/m

Kesimpulan :

1 Ampere adalah kuat arus dalam kawat sejajar yang jaraknya 1 meter dan menimbulkan gaya Lorentz sebesar 2.10-7

Pengertian Gaya Lorentz
Gaya Lorentz adalah gaya yang ditimbulkan oleh muatan listrik yang bergerak atau oleh arus listrik yang berada dalam suatu medan magnet (B). Arah gaya ini akan mengikuti arah maju skrup yang diputar dari vektor arah gerak muatan listrik (v) ke arah medan magnet (B), seperti yang terlihat dalam rumus berikut:


Keterangan:
F = gaya (Newton)
B = medan magnet (Tesla)
q = muatan listrik ( Coulomb)
v = arah kecepatan muatan (m/t)


Sebuah partikel bermuatan listrik yang bergerak dalam daerah medan magnet homogen akan mendapatkan gaya. Gaya ini juga dinamakan gaya Lorentz. Gerak partikel akan menyimpang searah dengan gaya lorentz yang mempengaruhi. Arah gaya Lorentz pada muatan yang bergerak dapat juga ditentukan dengan kaidah tangan kanan dari gaya Lorentz (F) akibat dari arus listrik, I dalam suatu medan magnet B. Ibu jari, menunjukan arah gaya Lorentz . Jari telunjuk, menunjukkan arah medan magnet ( B ). Jari tengah, menunjukkan arah arus listrik ( I ). Untuk muatan positif arah gerak searah dengan arah arus, sedang untuk muatan negatif arah gerak berlawanan dengan arah arus.

Jika besar muatan q bergerak dengan kecepatan v, dan I = q/t maka persamaan gaya adalah:
FL = I . ℓ . B sin θ
= q/t . ℓ . B sin θ
= q . ℓ/t . B sin θ
= q . v . B sin θ
*Karena ℓ/t = v
Sehingga besarnya gaya Lorentz yang dialami oleh sebuah muatan yang bergerak dalam daerah medan magnet dapat dicari dengan menggunakan rumus :
F = q . v . B sin θ
Keterangan:
F = gaya Lorentz dalam newton ( N )
q = besarnya muatan yang bergerak dalam coulomb ( C )
v = kecepatan muatan dalam meter / sekon ( m/s )
B = kuat medan magnet dalam Wb/m2 atau tesla ( T )
θ = sudut antara arah v dan B

Bila sebuah partikel bermuatan listrik bergerak tegak lurus dengan medan magnet homogen yang mempengaruhi selama geraknya, maka muatan akan bergerak dengan lintasan berupa lingkaran. Sebuah muatan positif bergerak dalam medan magnet B (dengan arah menembus bidang) secara terus menerus akan membentuk lintasan lingkaran dengan gaya Lorentz yang timbul menuju ke pusat lingkaran. Demikian juga untuk muatan negativ. Persamaan-persamaan yang memenuhi pada muatan yang bergerak dalam medan magnet homogen sedemikian sehinga membentuk lintasan lingkaran adalah :
*Gaya yang dialami akibat medan magnet : F = q . v . B
*Gaya sentripetal yang dialami oleh partikel : Dengan menyamakan kedua persamaan kia mendapatkan persamaan :

Keterangan:
R = jari-jari lintasan partikel dalam meter ( m )
m = massa partikel dalam kilogram ( kg )
v = kecepatan partikel dalam meter / sekon ( m/s )
B = kuat medan magnet dalam Wb/m2 atau tesla ( T )
q = muatan partikel dalam coulomb ( C )

Medan Magnet

Benda yang dapat menarik besi disebut MAGNET.

Macam-macam bentuk magnet, antara lain :

magnet batang magnet ladam magnet jarum

clip_image001

Magnet dapat diperoleh dengan cara buatan.

Jika baja di gosok dengan sebuah magnet, dan cara menggosoknya dalam arah yang tetap, maka baja itu akan menjadi magnet.

clip_image002

Baja atau besi dapat pula dimagneti oleh arus listrik.

Baja atau besi itu dimasukkan ke dalam kumparan kawat, kemudian ke dalam kumparan kawat dialiri arus listrik yang searah. Ujung-ujung sebuah magnet disebut Kutub Magnet. Garis yang menghubungkan kutub-kutub magnet disebut sumbu magnet dan garis tegak lurus sumbu magnet serta membagi dua sebuah magnet disebut garis sumbu.

clip_image003

Sebuah magnet batang digantung pada titik beratnya. Sesudah keadaan setimbang tercapai, ternyata kutub-kutub batang magnet itu menghadap ke Utara dan Selatan.

Kutub magnet yang menghadap ke utara di sebut kutub Utara.

Kutub magnet yang menghadap ke Selatan disebut kutub Selatan.

Hal serupa dapat kita jumpai pada magnet jarum yang dapat berputar pada sumbu tegak ( jarum deklinasi ).

Kutub Utara jarum magnet deklinasi yang seimbang didekati kutub Utara magnet batang, ternyata kutub Utara magnet jarum bertolak. Bila yang didekatkan adalah kutub selatan magnet batang, kutub utara magnet jarum tertarik.

clip_image004

Kesimpulan : Kutub-kutub yang sejenis tolak-menolak dan kutub-kutub yang tidak sejenis tarik-menarik

Jika kita gantungkan beberapa paku pada ujung-ujung sebuah magnet batang ternyata jumlah paku yang dapat melekat di kedua kutub magnet sama banyak. Makin ke tengah, makin berkurang jumlah paku yang dapat melekat.

Kesimpulan : Kekuatan kutub sebuah magnet sama besarnya semakin ke tengah kekuatannya makin berkurang.

HUKUM COULOMB.

Definisi : Besarnya gaya tolak-menolak atau gaya tarik menarik antara kutub-kutub magnet, sebanding dengan kuat kutubnya masing-masing dan berbanding terbalik dengan kwadrat jaraknya.

clip_image005

clip_image007

F = gaya tarik menarik/gaya tolak menolak dalam newton.

R = jarak dalam meter.

m1 dan m2 kuat kutub magnet dalam Ampere-meter.clip_image009

clip_image0110 = permeabilitas hampa.

Nilai clip_image013= 107 Weber/A.m

Nilai permeabilitas benda-benda, ternyata tidak sama dengan permeabilitas hampa.

Perbandingan antara permeabilitas suatu zat debgan permeabilitas hampa disebut permeabilitas relatif zat itu.

mrclip_image015

clip_image011[1]r = Permeabilitas relatif suatu zat.

clip_image011[2] = permeabilitas zat itu

clip_image011[3]0 = permeabilitas hampa.

PENGERTIAN MEDAN MAGNET.

Medan magnet adalah ruangan di sekitar kutub magnet, yang gaya tarik/tolaknya masih dirasakan oleh magnet lain.

Kuat Medan ( H ) = ITENSITY.

Kuat medan magnet di suatu titik di dalam medan magnet ialah besar gaya pada suatu satuan kuat kutub di titik itu di dalam medan magnet m adalah kuat kutub yang menimbulkan medan magnet dalam Ampere-meter. R jarak dari kutub magnet sampai titik yang bersangkutan dalam meter. dan H = kuat medan titik itu dalam : clip_image017 atau dalam clip_image019

Garis Gaya.

Garis gaya adalah : Lintasan kutub Utara dalam medan magnet atau garis yang bentuknya demikian hingga kuat medan di tiap titik dinyatakan oleh garis singgungnya.

Sejalan dengan faham ini, garis-garis gaya keluar dari kutub-kutub dan masuk ke dalam kutub Selatan. Untuk membuat pola garis-garis gaya dapat dengan jalan menaburkan serbuk besi disekitar sebuah magnet.

Gambar pola garis-garis gaya.

clip_image020

Rapat Garis-Garis Gaya ( FLUX DENSITY ) = B

Definisi : Jumlah garis gaya tiap satuan luas yang tegak lurus kuat medan.

clip_image022

Kuat medan magnet di suatu titik sebanding dengan rapat garis-garis gaya dan berbanding terbalik dengan permeabilitasnya.

clip_image024

clip_image026

B = rapat garis-garis gaya.

clip_image011[4] = Permeabilitas zat itu.

H = Kuat medan magnet.

catatan : rapat garis-garis gaya menyatakan kebesaran induksi magnetik.

Medan magnet yang rapat garis-garis gayanya sama disebut : medan magnet serba sama ( homogen )

clip_image028

Bila rapat garis-garis gaya dalam medan yang serba sama B, maka banyaknya garis-garis gaya ( clip_image030clip_image009[1] ) yang menembus bidang seluar A m2 dan mengapit sudut clip_image032 dengan kuat medan adalah : clip_image030[1] = B.A Sinclip_image032[1] Satuanya : Weber.

Diamagnetik Dan Para Magnetik.

Sehubungan dengan sifat-sifat kemagnetan benda dibedakan atas Diamagnetik dan Para magnetik.

Benda magnetik : bila ditempatkan dalam medan magnet yang tidak homogen, ujung-ujung benda itu mengalami gaya tolak sehingga benda akan mengambil posisi yang tegak lurus pada kuat medan. Benda-benda yang demikian mempunyai nilai permeabilitas relatif lebih kecil dari satu. Contoh : Bismuth, tembaga, emas, antimon, kaca flinta.

Benda paramagnetik : bila ditempatkan dalam medan magnet yang tidak homogen, akan mengambil posisi sejajar dengan arah kuat medan. Benda-benda yang demikian mempunyai permeabilitas relatif lebih besar dari pada satu. Contoh : Aluminium, platina, oksigen, sulfat tembaga dan banyak lagi garam-garam logam adalah zat paramagnetik.

Benda feromagnetik : Benda-benda yang mempunyai effek magnet yang sangat besar, sangat kuat ditarik oleh magnet dan mempunyai permeabilitas relatif sampai beberapa ribu. Contoh : Besi, baja, nikel, cobalt dan campuran logam tertentu ( almico )

MEDAN MAGNET DI SEKITAR ARUS LISTRIK.

Percobaan OERSTED

Di atas jarum kompas yang seimbang dibentangkan seutas kawat, sehingga kawat itu sejajar dengan jarum kompas. jika kedalam kaewat dialiri arus listrik, ternyata jarum kompas berkisar dari keseimbangannya.

Kesimpulan : Disekitar arus listrik ada medan magnet.

clip_image033

Cara menentukan arah perkisaran jarum.

a. Bila arus listrik yang berada anatara telapak tangan kanan dan jarum magnet mengalir dengan arah dari pergelangan tangan menuju ujung-ujung jari, kutub utara jarum berkisar ke arah ibu jari.

b. Bila arus listrik arahnya dari pergelangan tangan kanan menuju ibu jari, arah melingkarnya jari tangan menyatakan perkisaran kutub Utara.

Pola garis-garis gaya di sekitar arus lurus.

Pada sebidang karton datar ditembuskan sepotong kawat tegak lurus, di atas karbon ditaburkan serbuk besi menempatkan diri berupa lingkaran-lingkaran yang titik pusatnya pada titik tembus kawat.

clip_image034

Kesimpulan : Garis-garis gaya di sekitar arus lurus berupa lingkaran-lingkaran yang berpusatkan pada arus tersebut.

Cara menentukan arah medan magnet

Bila arah dari pergelangan tangan menuju ibu jari, arah melingkar jari tangan menyatakan arah medan magnet.

HUKUM BIOT SAVART.

Definisi : Besar induksi magnetik di satu titik di sekitar elemen arus, sebanding dengan panjang elemen arus, besar kuat arus, sinus sudut yang diapit arah arus dengan jaraknya sampai titik tersebut dan berbanding terbalik dengan kwadrat jaraknya.

clip_image036B = k . clip_image038

clip_image039 k adalah tetapan, di dalam sistem Internasional

k = clip_image041 = 10-7 clip_image043

Vektor B tegak lurus pada l dan r, arahnya dapat ditentukan denagan tangan kanan. Jika l sangat kecil, dapat diganti dengan dl.

dB = clip_image041[1] clip_image038[1]

Persamaan ini disebut hukum Ampere.

INDUKSI MAGNETIK

Induksi magnetik di sekitar arus lurus.

clip_image046

Besar induksi magnetik di titik A yang jaraknya a dari kawat sebanding dengan kuat arus dalam kawat dan berbanding terbalik dengan jarak titik ke kawat.

B = clip_image048 . clip_image050

B dalam W/m2

I dalam Ampere

a dalam meter

Kuat medan dititik H = clip_image052 = clip_image054 = clip_image056

mr udara = 1

clip_image057

Jika kawat tidak panjang maka harus digunakan Rumus : clip_image059

Induksi Induksi magnetik di pusat arus lingkaran.

clip_image060

Titik A berjarak x dari pusat kawat melingkar besarnya induksi magnetik di A dirumuskan :

Jika kawat itu terdiri atas N lilitan maka :

B = clip_image048[1] . clip_image062 atau B = clip_image048[2] . clip_image064

Induksi magnetik di pusat lingkaran.

Dalam hal ini r = a dan a = 900

Besar induksi magnetik di pusat lingkaran.

B = clip_image048[3] . clip_image066

B dalam W/m2.

I dalam ampere.

N jumlah lilitan.

a jari-jari lilitan dalam meter.

Arah medan magnetik dapat ditentukan dengan aturan tangan kanan.

clip_image067

Jika arah arus sesuai dengan arah melingkar jari tangan kanan arah ibu jari menyatakan arah medan magnet.

Solenoide

Solenoide adalah gulungan kawat yang di gulung seperti spiral.

Bila kedalam solenoide dialirkan arus listrik, di dalam selenoide terjadi medan magnet dapat ditentukan dengan tangan.

Gambar :

clip_image068

Besar induksi magnetik dalam solenoide.

clip_image069

Jari-jari penampang solenoide a, banyaknya lilitan N dan panjang solenoide 1. Banyaknya lilitan pada dx adalah : clip_image071 atau n dx, n banyaknya lilitan tiap satuan panjang di titik P.

Bila 1 sangat besar dibandingkan dengan a, dan p berada di tengah-tengah maka a1= 0 0 dan a2 = 180 0

Induksi magnetik di tengah-tengah solenoide :

clip_image073

clip_image075

Bila p tepat di ujung-ujung solenoide a1= 0 0 dan a2 = 90 0

clip_image077

clip_image079

Toroida

Sebuah solenoide yanfg dilengkungkan sehingga sumbunya membentuk lingkaran di sebut Toroida.

Bila keliling sumbu toroida 1 dan lilitannya berdekatan, maka induksi magnetik pada sumbu toroida.

clip_image081

n dapat diganti dengan clip_image083

N banyaknya lilitan dan R jari-jari toroida.