Rabu, 02 Desember 2009

Momentum, Implus, Tumbukan

MOMENTUM, IMPULS, DAN TUMBUKAN

Momentum adalah besaran vektor. Momentum sebuah partikel dapat dipandang sebagai ukuran kesulitan untuk mendiamkan benda.

1. MOMENTUM LINIER (p)

MOMENTUM LINIER adalah massa kali kecepatan linier benda. Jadi setiap benda yang memiliki kecepatan pasti memiliki momentum.

p = m v

Momentum merupakan besaran vektor, dengan arah p = arah v

2. MOMENTUM ANGULER (L)

MOMENTUM ANGULER adalah hasil kali (cross product) momentum linier dengan jari jari R. Jadi setiap benda yang bergerak melingkar pasti memiliki momentum anguler.

L = m v R = m w R2
L = p R

Momentum anguler merupakan besaran vektor dimana arah L tegak lurus arah R sedangkan besarnya tetap.

Jika pada benda bekerja gaya F tetap selama waktu t, maka IMPULS I dari gaya itu adalah:

t1
I = ò F dt = F (t2 - t1)
t2

I = Perubahan momentum
Ft = m v akhir - m v awal


Impuls merupakan besaran vektor. Pengertian impuls biasanya dipakai dalam peristiwa besar dimana F >> dan t <<. Jika gaya F tidak tetap (F fungsi dari waktu) maka rumus I = F . t tidak berlaku.

Impuls dapat dihitung juga dengan cara menghitung luas kurva dari grafik gaya F vs waktu t.

HUKUM KEKEKALAN MOMENTUM

Hukum kekekalan momentum diterapkan pada proses tumbukan semua jenis, dimana prinsip impuls mendasari proses tumbukan dua benda, yaitu I1 = -I2.

Hukum Kekekalan Momentum. Tidak peduli berapapun massa dan kecepatan benda yang saling bertumbukan, ternyata momentum total sebelum tumbukan = momentum total setelah tumbukan. Hal ini berlaku apabila tidak ada gaya luar alias gaya eksternal total yang bekerja pada benda yang bertumbukan. Jadi analisis kita hanya terbatas pada dua benda yang bertumbukan, tanpa ada pengaruh dari gaya luar. Sekarang perhatikan gambar di bawah ini.
< ![endif]-->

Jika dua benda yang bertumbukan diilustrasikan dengan gambar di atas, maka secara matematis, hukum kekekalan momentum dinyatakan dengan persamaan :
< ![endif]-->

Keterangan :
m1 = massa benda 1, m2 = massa benda 2, v1 = kecepatan benda 1 sebelum tumbukan, v2 = kecepatan benda 2 sebelum tumbukan, v’1 = kecepatan benda 1 setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan
Jika dinyatakan dalam momentum, maka :
m1v1 = momentum benda 1 sebelum tumbukan, m2v2 = momentum benda 2 sebelum tumbukan, m1v‘1 = momentum benda 1 setelah tumbukan, m2v‘2 = momentum benda 2 setelah tumbukan
Dalam penyelesaian soal, searah vektor ke kanan dianggap positif, sedangkan ke kiri dianggap negatif. Dua benda yang bertumbukan akan memenuhi tiga keadaan/sifat ditinjau dari keelastisannya,

a. ELASTIS SEMPURNA : e = 1

e = (- VA' - VB')/(VA - VB)

e = koefisien restitusi.
Disini berlaku hukum kokokalan energi den kokekalan momentum.

b. ELASTIS SEBAGIAN: 0 <>Disini hanya berlaku hukum kekekalan momentum.

Khusus untuk benda yang jatuh ke tanah den memantul ke atas lagi maka koefisien restitusinya adalah:

e = h'/h

h = tinggi benda mula-mula
h' = tinggi pantulan benda

C. TIDAK ELASTIS: e = 0
Setelah tumbukan, benda melakukan gerak yang sama dengan satu kecepatan v',

MA VA + MB VB = (MA + MB) v'

Disini hanya berlaku hukum kekekalan momentum

Contoh:

1. Sebuah bola dengan massa 0.1 kg dijatuhkan dari ketinggian 1.8 meter dan mengenai lantai, kemudian dipantulkan kembali sampai ketinggian 1.2 meter. Jika g = 10 m/det2.
Tentukanlah:
a. impuls karena beret bola ketika jatuh.
b. koefisien restitusi

Jawab:

a. Selama bola jatuh ke tanah terjadi perubahan energi potensial menjadi energi kinetik.

Ep = Ek

m g h = 1/2 mv2 ® v2 = 2 gh

® v = Ö2 g h

impuls karena berat ketika jatuh:

I = F . Dt = m . Dv

= 0.1Ö2gh = 0.1 Ö(2.10.1.8) = 0.1.6 = 0,6 N det.


b. Koefisien restitusi:

e = Ö(h'/h) = Ö(1.2/1.8) = Ö(2/3)


Energi

ENERGI

Segala sesuatu yang kita lakukan dalam kehidupan sehari-hari membutuhkan energi. Untuk bertahan hidup kita membutuhkan energi yang diperoleh dari makanan. Setiap kendaraan membutuhkan energi untuk bergerak dan energi itu diperoleh dari bahan bakar. Hewan juga membutuhkan energi untuk hidup, sebagaimana manusia dan tumbuhan.

Energi merupakan salah satu konsep yang paling penting dalam fisika. Konsep yang sangat erat kaitannya dengan usaha adalah konsep energi. Secara sederhana, energi merupakan kemampuan melakukan usaha. Definisi yang sederhana ini sebenarnya kurang tepat atau kurang valid untuk beberapa jenis energi (misalnya energi panas atau energi cahaya tidak dapat melakukan kerja). Definisi tersebut hanya bersifat umum. Secara umum, tanpa energi kita tidak dapat melakukan kerja. Sebagai contoh, jika kita mendorong sepeda motor yang mogok, usaha alias kerja yang kita lakukan menggerakan sepeda motor tersebut. Pada saat yang sama, energi kimia dalam tubuh kita menjadi berkurang, karena sebagian energi kimia dalam tubuh berubah menjadi energi kinetik sepeda motor. Usaha dilakukan ketika energi dipindahkan dari satu benda ke benda lain. Contoh ini juga menjelaskan salah satu konsep penting dalam sains, yakni kekekalan energi. Jumlah total energi pada sistem dan lingkungan bersifat kekal alias tetap. Energi tidak pernah hilang, tetapi hanya dapat berubah bentuk dari satu bentuk energi menjadi bentuk energi lain. Mengenai Hukum Kekekalan Energi akan kita kupas tuntas dalam pokok bahasan tersendiri.

Usaha Dan Energi

USAHA DAN ENERGI


USAHA


Usaha alias Kerja yang dilambangkan dengan huruf W (Work-bahasa inggris), digambarkan sebagai sesuatu yang dihasilkan oleh Gaya (F) ketika Gaya bekerja pada benda hingga benda bergerak dalam jarak tertentu. Hal yang paling sederhana adalah apabila Gaya (F) bernilai konstan (baik besar maupun arahnya) dan benda yang dikenai Gaya bergerak pada lintasan lurus dan searah dengan arah Gaya tersebut.

Secara matematis, usaha yang dilakukan oleh gaya yang konstan didefinisikan sebagai hasil kali perpindahan dengan gaya yang searah dengan perpindahan.





Persamaan matematisnya adalah :

W = Fs cos 0 = Fs (1) = Fs

W adalah usaha alias kerja, F adalah besar gaya yang searah dengan perpindahan dan s adalah besar perpindahan.


Apabila gaya konstan tidak searah dengan perpindahan, sebagaimana tampak pada gambar di bawah, maka usaha yang dilakukan oleh gaya pada benda didefinisikan sebagai perkalian antara perpindahan dengan komponen gaya yang searah dengan perpindahan. Komponen gaya yang searah dengan perpindahan adalah F cos teta






Secara matematis dirumuskan sebagai berikut :



Hasil perkalian antara besar gaya (F) dan besar perpindahan (s) di atas merupakan bentuk perkalian titik atau perkalian skalar. Karenanya usaha masuk dalam kategori besaran skalar. Pelajari lagi perkalian vektor dan skalar kalau dirimu bingun… Persamaan di atas bisa ditulis dalam bentuk seperti ini :



Satuan Usaha dalam Sistem Internasional (SI) adalah newton-meter. Satuan newton-meter juga biasa disebut Joule ( 1 Joule = 1 N.m). menggunakan sistem CGS (Centimeter Gram Sekon), satuan usaha disebut erg. 1 erg = 1 dyne.cm. Dalam sistem British, usaha diukur dalam foot-pound (kaki-pon). 1 Joule = 107 erg = 0,7376 ft.lb.


Perlu anda pahami dengan baik bahwa sebuah gaya melakukan usaha apabila benda yang dikenai gaya mengalami perpindahan. Jika benda tidak berpindah tempat maka gaya tidak melakukan usaha. Agar memudahkan pemahaman anda, bayangkanlah anda sedang menenteng buku sambil diam di tempat. Walaupun anda memberikan gaya pada buku tersebut, sebenarnya anda tidak melakukan usaha karena buku tidak melakukan perpindahan. Ketika anda menenteng atau menjinjing buku sambil berjalan lurus ke depan, ke belakang atau ke samping, anda juga tidak melakukan usaha pada buku. Pada saat menenteng buku atau menjinjing tas, arah gaya yang diberikan ke atas, tegak lurus dengan arah perpindahan. Karena tegak lurus maka sudut yang dibentuk adalah 90o. Cos 90o = 0, karenanya berdasarkan persamaan di atas, nilai usaha sama dengan nol.
Contoh Soal 1 :

Sebuah peti kemas bermassa 50 kg yang terletak pada lantai ditarik horisontal sejauh 2 meter dengan gaya 100 N oleh seorang buruh pelabuhan. Lantai tersebut agak kasar sehingga gaya gesekan yang diberikan pada karung beras sebesar 50 N. Hitunglah usaha total yang dilakukan terhadap karung berisi beras tersebut…





Panduan jawaban :

Sebelum menghitung usaha total, terlebih dahulu kita hitung usaha yang dilakukan oleh buruh karung dan usaha yang dilakukan oleh gaya gesekan. Kita tetapkan arah kanan bertanda positif sedangkan arah kiri negatif. (b = buruh, Fg = gaya gesekan, N = gaya normal, w = berat). Gaya gesekan berlawanan arah dengan arah gerakan benda sehingga bertanda negatif.

Pada soal di atas, terdapat empat gaya yang bekerja pada peti kemas, yakni gaya tarik buruh (searah dengan perpindahan peti kemas), gaya gesekan (berlawanan arah dengan perpindahan peti), gaya berat dan gaya normal (tegak lurus arah perpindahan, sudut yang terbentuk adalah 90o).

Untuk mengetahui usaha total, terlebih dahulu kita hitung besar usaha yang dilakukan masing-masing gaya tersebut.

Usaha yang dilakukan oleh buruh pelabuhan :

Wb = Fb.s = (100 N) (2 m) = 200 N.m

Usaha yang dilakukan oleh Gaya gesekan :

Wg = Fg.s =- (50 N) (2 m) = -100 N.m

Usaha yang dilakukan oleh gaya berat :

Ww = Fw.s = (mg) (2 m) cos 90o = 0

Usaha yang dilakukan oleh gaya normal :

WN = FN.s = (mg) (2 m) cos 90o = 0


Usaha total = Wb + Wg + Ww + WN = (200 N.m) + (-100 N.m) + 0 + 0 = 100 N.m = 100 Joule

Modulus Young

Ini adalah persamaan matematis dari Modulus Elastis (E) alias modulus Young (Y). Jadi modulus elastis sebanding dengan Tegangan dan berbanding terbalik Regangan.


Di bawah ini adalah daftar modulus elastis dari berbagai jenis benda padat





Contoh:

1. Sebuah kawat baja (E = 2 x 1011 N/m2). Panjang 125 cm dan diameternya 0.5 cm mengalami gaya tarik 1 N.Tentukan:

a. tegangan.
b. regangan.
c. pertambahan panjang kawat.

Jawab:

a. Tegangan = F/A ; F = 1 N.
A = p r2 = 3.14 (1/4 . 10-2)2
A = 1/(3.14 . 1/16 . 10-4) = 16 . 10-4/3.14 = 5.09 . 104 N/M2
b. Regangan = e = DL/L = (F/A)/E
= 5.09. 104/2.1011 = 2.55.10-7

c. Pertambahan panjang kawat: DL = e . L = 2.55 . 10-7 . 125 = 3.2 . 10-5 cm


Rangkaian pegas.

Elastisitas

ELASTISITAS
Elastisitas merupakan salah satu sifat mekanik bahan yang dapat menunjukkan kekuatan,ketahanan dan kekakuan bahan tersebut terhadap gaya yang dikenakan padanya.Tegangan didefinisikan sebagai gaya persatuan luas.

Secara matematis:
σ = F/A
Dimana σ = Tegangan (N/m2 atau Pa)
F = gaya (N)
A = luas penampang (m2)

Selasa, 01 Desember 2009

Gerak Harmonis Sedrhana

GERAK HARMONIK

Setiap gerak yang terjadi secara berulang dalam selang waktu yang sama disebut gerak periodik. Karena gerak ini terjadi secara teratur maka disebut juga sebagai gerak harmonik/harmonis. Apabila suatu partikel melakukan gerak periodik pada lintasan yang sama maka geraknya disebut gerak osilasi/getaran. Bentuk yang sederhana dari gerak periodik adalah benda yang berosilasi pada ujung pegas. Karenanya kita menyebutnya gerak harmonis sederhana. Banyak jenis gerak lain (osilasi dawai, roda keseimbangan arloji, atom dalam molekul, dan sebagainya) yang mirip dengan jenis gerakan ini, sehingga pada kesempatan ini kita akan membahasnya secara mendetail.

GERAK HARMONIS SEDERHANA

Gerak harmonis sederhana yang dapat dijumpai dalam kehidupan sehari-hari adalah getaran benda pada pegas dan getaran benda pada ayunan sederhana. Kita akan mempelajarinya satu persatu.

Gerak Harmonis Sederhana pada Ayunan

Ketika beban digantungkan pada ayunan dan tidak diberikan gaya maka benda akan diam di titik kesetimbangan B. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A. Gerakan beban akan terjadi berulang secara periodik, dengan kata lain beban pada ayunan di atas melakukan gerak harmonik sederhana.

Besaran fisika pada Gerak Harmonik Sederhana pada ayunan sederhana

Periode (T)

Benda yang bergerak harmonis sederhana pada ayunan sederhana memiliki periode alias waktu yang dibutuhkan benda untuk melakukan satu getaran secara lengkap. Benda melakukan getaran secara lengkap apabila benda mulai bergerak dari titik di mana benda tersebut dilepaskan dan kembali lagi ke titik tersebut.

Pada contoh di atas, benda mulai bergerak dari titik A lalu ke titik B, titik C dan kembali lagi ke B dan A. Urutannya adalah A-B-C-B-A. Seandainya benda dilepaskan dari titik C maka urutan gerakannya adalah C-B-A-B-C.

Jadi periode ayunan (T) adalah waktu yang diperlukan benda untuk melakukan satu getaran (disebut satu getaran jika benda bergerak dari titik di mana benda tersebut mulai bergerak dan kembali lagi ke titik tersebut ). Satuan periode adalah sekon atau detik.

Frekuensi (f)

Selain periode, terdapat juga frekuensi alias banyaknya getaran yang dilakukan oleh benda selama satu detik. Yang dimaksudkan dengan getaran di sini adalah getaran lengkap. Satuan frekuensi adalah 1/sekon atau s-1. 1/sekon atau s-1 disebut juga hertz, menghargai seorang fisikawan. Hertz adalah nama seorang fisikawan tempo doeloe. Silahkan baca biografinya untuk mengenal almahrum eyang Hertz lebih dekat.

Hubungan antara Periode dan Frekuensi

Frekuensi adalah banyaknya getaran yang terjadi selama satu detik/sekon. Dengan demikian selang waktu yang dibutuhkan untuk melakukan satu getaran adalah :

Selang waktu yang dibutuhkan untuk melakukan satu getaran adalah periode. Dengan demikian, secara matematis hubungan antara periode dan frekuensi adalah sebagai berikut :

Amplitudo (f)

Pada ayunan sederhana, selain periode dan frekuensi, terdapat juga amplitudo. Amplitudo adalah perpindahan maksimum dari titik kesetimbangan. Pada contoh ayunan sederhana sesuai dengan gambar di atas, amplitudo getaran adalah jarak AB atau BC.

Gerak Harmonis Sederhana pada Pegas

Semua pegas memiliki panjang alami sebagaimana tampak pada gambar a. Ketika sebuah benda dihubungkan ke ujung sebuah pegas, maka pegas akan meregang (bertambah panjang) sejauh y. Pegas akan mencapai titik kesetimbangan jika tidak diberikan gaya luar (ditarik atau digoyang), sebagaimana tampak pada gambar B. Jika beban ditarik ke bawah sejauh y1 dan dilepaskan (gambar c), benda akan akan bergerak ke B, ke D lalu kembali ke B dan C. Gerakannya terjadi secara berulang dan periodik. Sekarang mari kita tinjau hubungan antara gaya dan simpangan yang dialami pegas.

Kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.

Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).

Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).

Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :

Persamaan ini sering dikenal sebagai hukum hooke dan dicetuskan oleh paman Robert Hooke. k adalah konstanta dan x adalah simpangan. Hukum Hooke akurat jika pegas tidak ditekan sampai kumparan pegas bersentuhan atau diregangkan sampai batas elastisitas. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan kaku atau lembut sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin lembut sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Pegas dapat bergerak jika terlebih dahulu diberikan gaya luar. Amati bahwa besarnya gaya bergantung juga pada besar x (simpangan).

Rangkaian Pegas

Untuk benda elstis

Perbandingan antara tegangan dan regangan dinamakan sebagai modulus elastisitas atau modulus young (E)

“Perubahan panjang suatu pegas berbanding lurus (linier) dengan gaya tarik atau gaya tekan yang diberikan pada pegas tersebut”

dimana F = Gaya yang diberikan;
Δx = Pertambahan panjang.
Nilai , namun ada faktor pengali. Faktor pengali ini disimbolkan dengan huruf k sehingga
rumusan hukum Hooke
Nilai k untuk tiap bahan berbeda-beda dan merupakan ciri khusus dari tiap bahan. Nilai k ini dinamakan sebagai konstanta pegas.
Apabila suatu pegas ditarik gaya sebesar F maka pegas tersebut akan bertambah besar sepanjang . Namun pada keadaan tertentu dimana gaya yang diberikan melebihi batas kemampuan dari pegas, maka pegas tidak dapat bertambah panjang lagi. Artinya hukum hooke tidak berlaku lagi. Dalam keadaan seperti ini pegas dikatakan sudah rusak.
Apabila gaya yang dikenakan pada pegas dihilangkan, maka pegas akan bergerak secara berosilasi menuju titik keseimbangan ( keadaan awal ).
Besarnya gaya yang diperlukan untuk kembali ke titik keseimbangan ini dinamakan sebagai gaya pemulih. Berdasarkan hukum III Newton, maka besarnya gaya pemulih sama dengan gaya yang diberikan untuk menarik pegas, hanya tandanya berlawanan.
tanda (-) menunjukan bahwa gaya pemulih berlawanan dengan gaya penyebabnya.
Simpangan terjauh dari titik keseimbangannya dinamakan seBagai amplitudo A. Selama geraknya, pegas memenuhi persamaan

Periodenya adalah

sedangkan frekuensinya

Energi potensial yang dimiliki pegas adalah

Rangkaian pegas.
Rangkaian seri
2 pegas atau lebih yang dirangkai secara seri akan memiliki nilai konstanta pegas total sebesar



Rangkaian paralel
2 pegas atau lebih yang dirangkai secara paralel akan memiliki nilai konstanta pegas total sebesar

Energi Potensial Pegas

Energi Potensial Gravitasi

Contoh yang paling umum dari energi potensial adalah energi potensial gravitasi. Buah mangga yang lezat dan ranum memiliki energi potensial gravitasi ketika sedang menggelayut pada tangkainya. Demikian juga ketika anda berada pada ketinggian tertentu dari permukaan tanah (misalnya di atap rumah ;) atau di dalam pesawat). Energi potensial gravitasi dimiliki benda karena posisi relatifnya terhadap bumi. Setiap benda yang memiliki energi potensial gravitasi dapat melakukan kerja apabila benda tersebut bergerak menuju permukaan bumi (misalnya buah mangga jatuh dari pohon). Untuk memudahkan pemahamanmu, lakukan percobaan sederhana berikut ini. Pancangkan sebuah paku di tanah. Angkatlah sebuah batu yang ukurannya agak besar dan jatuhkan batu tegak lurus pada paku tersebut. Amati bahwa paku tersebut terpancang semakin dalam akibat usaha alias kerja yang dilakukan oleh batu yang anda jatuhkan.

Sekarang mari kita tentukan besar energi potensial gravitasi sebuah benda di dekat permukaan bumi. Misalnya kita mengangkat sebuah batu bermassa m. gaya angkat yang kita berikan pada batu paling tidak sama dengan gaya berat yang bekerja pada batu tersebut, yakni mg (massa kali percepatan gravitasi). Untuk mengangkat batu dari permukaan tanah hingga mencapai ketinggian h, maka kita harus melakukan usaha yang besarnya sama dengan hasil kali gaya berat batu (W = mg) dengan ketinggian h. Ingat ya, arah gaya angkat kita sejajar dengan arah perpindahan batu, yakni ke atas… FA = gaya angkat

W = FA . s = (m)(-g) (s) = – mg(h2-h1) —– persamaan 1

Tanda negatif menunjukkan bahwa arah percepatan gravitasi menuju ke bawah…

Dengan demikian, energi potensial gravitasi sebuah benda merupakan hasil kali gaya berat benda (mg) dan ketinggiannya (h). h = h2 – h1

EP = mgh —— persamaan 2

Berdasarkan persamaan EP di atas, tampak bahwa makin tinggi (h) benda di atas permukaan tanah, makin besar EP yang dimiliki benda tersebut. Ingat ya, EP gravitasi bergantung pada jarak vertikal alias ketinggian benda di atas titik acuan tertentu. Biasanya kita tetapkan tanah sebagai titik acuan jika benda mulai bergerak dari permukaan tanah atau gerakan benda menuju permukaan tanah. Apabila kita memegang sebuah buku pada ketinggian tertentu di atas meja, kita bisa memilih meja sebagai titik acuan atau kita juga bisa menentukan permukaan lantai sebagai titik acuan. Jika kita tetapkan permukaan meja sebagai titik acuan maka h alias ketinggian buku kita ukur dari permukaan meja. Apabila kita tetapkan tanah sebagai titik acuan maka ketinggian buku (h) kita ukur dari permukaan lantai.

Jika kita gabungkan persamaan 1 dengan persamaan 2 :

Persamaan ini menyatakan bahwa usaha yang dilakukan oleh gaya yang menggerakan benda dari h1 ke h2 (tanpa percepatan) sama dengan perubahan energi potensial benda antara h1 dan h2. Setiap bentuk energi potensial memiliki hubungan dengan suatu gaya tertentu dan dapat dinyatakan sama dengan EP gravitasi. Secara umum, perubahan EP yang memiliki hubungan dengan suatu gaya tertentu, sama dengan usaha yang dilakukan gaya jika benda dipindahkan dari kedudukan pertama ke kedudukan kedua. Dalam makna yang lebih sempit, bisa dinyatakan bahwa perubahan EP merupakan usaha yang diperlukan oleh suatu gaya luar untuk memindahkan benda antara dua titik, tanpa percepatan.

Contoh soal 1 :

Buah mangga yang ranum dan mengundang selera menggelayut pada tangkai pohon mangga yang berjarak 10 meter dari permukaan tanah. Jika massa buah mangga tersebut 0,2 kg, berapakah energi potensialnya ? anggap saja percepatan gravitasi 10 m/s2.

Panduan jawaban :

EP = mgh

EP = (0,2 kg) (10 m/s2) (10 m)

EP = 20 Kg m2/s2 = 20 N.m = 20 Joule

Contoh soal 2 :

Seekor monyet bermassa 5 kg berayun dari satu dahan ke dahan lain yang lebih tinggi 2 meter. Berapakah perubahan energi potensial monyet tersebut ? g = 10 m/s2

Panduan jawaban :

Soal ini sangat gampang… kita tetapkan dahan pertama sebagai titik acuan, di mana h = 0. Kita hanya perlu menghitung EP monyet ketika berada pada dahan kedua…

EP = mgh = (5 kg) (10 m/s2) (2 m)

EP = 100 Joule

Dengan demikian, perubahan energi potensial monyet = 100 Joule.

Contoh soal 3 :

Seorang buruh pelabuhan yang tingginya 1,50 meter mengangkat sekarung beras yang bermassa 50 kg dari permukaan tanah dan memberikan kepada seorang temannya yang berdiri di atas kapal. Jika orang tersebut tersebut berada 0,5 meter tepat di atas kepala buruh pelabuhan, hitunglah energi potensial karung berisi beras relatif terhadap :

a) permukaan tanah

b) kepala buruh pelabuhan

Panduan jawaban :

a). EP karung berisi beras relatif terhadap permukaan tanah

Ketinggian total karung beras dari permukaan tanah = 1,5 m + 0,5 m = 2 meter

Dengan demikian,

EP = mgh = (50 kg) (10 m/s2) (2 m)

EP = 1000 Joule

b). EP karung berisi beras relatif terhadap kepala buruh pelabuhan

Kedudukan karung beras diukur dari kepala buruh pelabuhan adalah 0,5 meter.

EP = mgh = (50 kg) (10 m/s2) (0,5 m)

EP = 250 Joule

Energi Potensial Elastis

Sebagaimana dijelaskan pada bagian awal tulisan ini, selain energi potensial gravitasi terdapat juga energi potensial elastis. EP elestis berhubungan dengan benda-benda yang elastis, misalnya pegas. Mari kita bayangkan sebuah pegas yang ditekan dengan tangan. Apabila kita melepaskan tekanan pada pegas, maka pegas tersebut melakukan usaha pada tangan kita. Efek yang dirasakan adalah tangan kita terasa seperti di dorong. Apabila kita menempelkan sebuah benda pada ujung pegas, kemudian pegas tersebut kita tekan, maka setelah dilepaskan benda yang berada di ujung pegas pasti terlempar…. perhatikan gambar di bawah. Jika dirimu mempunyai koleksi pegas, baik di rumah maupun di sekolah, silahkan melakukan percobaan ini untuk membuktikannya….

Ketika berada dalam keadaan diam, setiap pegas memiliki panjang alami, seperti ditunjukkan gambar a (lihat gambar di bawah). Jika pegas di tekan sejauh x dari panjang alami, diperlukan gaya sebesar FT (gaya tekan) yang nilainya berbanding lurus dengan x, yakni :

FT = kx

k adalah konstanta pegas (ukuran kelenturan/elastisitas pegas) dan besarnya tetap. Ketika ditekan, pegas memberikan gaya reaksi, yang besarnya sama dengan gaya tekan tetapi arahnya berlawanan. gaya reaksi pegas tersebut dikenal sebagai gaya pemulih. Besarnya gaya pemulih adalah :

FP = -kx

Tanda minus menunjukkan bahwa arah gaya pemulih berlawanan arah dengan gaya tekan. Ini adalah persamaan hukum Hooke. Persamaan ini berlaku apabila pegas tidak ditekan sampai melewati batas elastisitasnya (x tidak sangat besar).

Untuk menghitung Energi Potensial pegas yang ditekan atau diregangkan, terlebih dahulu kita hitung gaya usaha yang diperlukan untuk menekan atau meregangkan pegas. Kita tidak bisa menggunakan persamaan W = F s = F x, karena gaya tekan atau gaya regang yang kita berikan pada pegas selalu berubah-ubah selama pegas ditekan. Ketika menekan pegas misalnya, semakin besar x, gaya tekan kita juga semakin besar. Beda dengan gaya angkat yang besarnya tetap ketika kita mengangkat batu. Lalu bagaimana cara mengakalinya ?

Kita menggunakan gaya rata-rata. Gaya tekan atau gaya regang selalu berubah, dari F = 0 ketika x = 0 sampai F = kx (ketika pegas tertekan atau teregang sejauh x). Besar gaya rata-rata adalah :

x merupakan jarak total pegas yang teregang atau pegas yang tertekan (bandingkan dengan gambar di atas).

Usaha yang dilakukan adalah :

Nah, akhirnya kita menemukan persamaan Energi Potensial elastis (EP Pegas)….

Catatan :

Tidak ada rumus umum untuk Energi Potensial. Berbeda dengan energi kinetik yang memiliki satu rumus umum, EK = ½ mv2, bentuk persamaan EP bergantung gaya yang melakukan usaha

Hukum Hooke

HUKUM HOOKE

Hukum Hooke pada Pegas

Misalnya kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.

Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).

Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).

Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :

Persamaan ini sering dikenal sebagai persamaan pegas dan merupakan hukum hooke. Hukum ini dicetuskan oleh paman Robert Hooke (1635-1703). k adalah konstanta dan x adalah simpangan. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan elastisitas sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin elastis sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Hasil eksperimen menunjukkan bahwa x sebanding dengan gaya yang diberikan pada benda.

Hukum Hooke untuk benda non Pegas

Hukum hooke ternyata berlaku juga untuk semua benda padat, dari besi sampai tulang tetapi hanya sampai pada batas-batas tertentu. Mari kita tinjau sebuah batang logam yang digantung vertikal, seperti yang tampak pada gambar di bawah.

Pada benda bekerja gaya berat (berat = gaya gravitasi yang bekerja pada benda), yang besarnya = mg dan arahnya menuju ke bawah (tegak lurus permukaan bumi). Akibat adanya gaya berat, batang logam tersebut bertambah panjang sejauh (delta L)

Jika besar pertambahan panjang (delta L) lebih kecil dibandingkan dengan panjang batang logam, hasil eksperimen membuktikan bahwa pertambahan panjang (delta L) sebanding dengan gaya berat yang bekerja pada benda. Perbandingan ini dinyatakan dengan persamaan :

Persamaan ini kadang disebut sebagai hukum Hooke. Kita juga bisa menggantikan gaya berat dengan gaya tarik, seandainya pada ujung batang logam tersebut tidak digantungkan beban.

Besarnya gaya yang diberikan pada benda memiliki batas-batas tertentu. Jika gaya sangat besar maka regangan benda sangat besar sehingga akhirnya benda patah. Hubungan antara gaya dan pertambahan panjang (atau simpangan pada pegas) dinyatakan melalui grafik di bawah ini.

Jika sebuah benda diberikan gaya maka hukum Hooke hanya berlaku sepanjang daerah elastis sampai pada titik yang menunjukkan batas hukum hooke. Jika benda diberikan gaya hingga melewati batas hukum hooke dan mencapai batas elastisitas, maka panjang benda akan kembali seperti semula jika gaya yang diberikan tidak melewati batas elastisitas. tapi hukum Hooke tidak berlaku pada daerah antara batas hukum hooke dan batas elastisitas. Jika benda diberikan gaya yang sangat besar hingga melewati batas elastisitas, maka benda tersebut akan memasuki daerah plastis dan ketika gaya dihilangkan, panjang benda tidak akan kembali seperti semula; benda tersebut akan berubah bentuk secara tetap. Jika pertambahan panjang benda mencapai titik patah, maka benda tersebut akan patah.

Berdasarkan persamaan hukum Hooke di atas, pertambahan panjang (delta L) suatu benda bergantung pada besarnya gaya yang diberikan (F) dan materi penyusun dan dimensi benda (dinyatakan dalam konstanta k). Benda yang dibentuk oleh materi yang berbeda akan memiliki pertambahan panjang yang berbeda walaupun diberikan gaya yang sama, misalnya tulang dan besi. Demikian juga, walaupun sebuah benda terbuat dari materi yang sama (besi, misalnya), tetapi memiliki panjang dan luas penampang yang berbeda maka benda tersebut akan mengalami pertambahan panjang yang berbeda sekalipun diberikan gaya yang sama. Jika kita membandingkan batang yang terbuat dari materi yang sama tetapi memiliki panjang dan luas penampang yang berbeda, ketika diberikan gaya yang sama, besar pertambahan panjang sebanding dengan panjang benda mula-mula dan berbanding terbalik dengan luas penampang. Makin panjang suatu benda, makin besar besar pertambahan panjangnya, sebaliknya semakin tebal benda, semakin kecil pertambahan panjangnya. Jika hubungan ini kita rumuskan secara matematis, maka akan diperoleh persamaan sebagai berikut :

Persamaan ini menyatakan hubungan antara pertambahan panjang (delta L) dengan gaya (F) dan konstanta (k). Materi penyusun dan dimensi benda dinyatakan dalam konstanta k. Untuk materi penyusun yang sama, besar pertambahan panjang (delta L) sebanding dengan panjang benda mula-mula (Lo) dan berbanding terbalik dengan luas penampang (A). Kalau dirimu bingung dengan panjang mula-mula atau luas penampang, coba amati gambar di bawah ini terlebih dahulu.

Dah paham panjang mula-mula (Lo) dan luas penampang (A) ?... Lanjut ya …

Besar E bergantung pada benda (E merupakan sifat benda). Secara matematis akan kita turunkan nanti… tuh di bawah

Pada persamaan ini tampak bahwa pertambahan panjang (delta L) sebanding dengan hasil kali panjang benda mula-mula (Lo) dan Gaya per satuan Luas (F/A).

Tegangan

Gaya per satuan Luas disebut juga sebagai tegangan. Secara matematis ditulis :

Satuan tegangan adalah N/m2 (Newton per meter kuadrat)

Regangan

Regangan merupakan perbandingan antara perubahan panjang dengan panjang awal. Secara matematis ditulis :

Karena L sama-sama merupakan dimensi panjang, maka regangan tidak mempunyai satuan (regangan tidak mempunyai dimensi).

Regangan merupakan ukuran perubahan bentuk benda dan merupakan tanggapan yang diberikan oleh benda terhadap tegangan yang diberikan. Jika hubungan antara tegangan dan regangan dirumuskan secara matematis, maka akan diperoleh persamaan berikut :

Ini adalah persamaan matematis dari Modulus Elastis (E) alias modulus Young (Y). Jadi modulus elastis sebanding dengan Tegangan dan berbanding terbalik Regangan.

Di bawah ini adalah daftar modulus elastis dari berbagai jenis benda padat

Referensi :

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga

Kanginan, Marthen, 2000, Fisika 2000, SMU kelas 1, Caturwulan 2, Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga